Monday, August 15, 2016

Grout Pad

Due to the difficulty of constructing a smooth and level concrete surface on the connection foundation (further complicated by the presence of anchor rods), grout is typically installed under the base plate to ensure full bearing contact for the effective transfer of bearing loads. Although grout is installed for most base plate connections, it has received limited research attention. As a rule of thumb, grout is required to have a specified compressive strength of at least twice the specified strength of the concrete in the foundation (Fisher & Kloiber, 2006). The thickness of the grout pad generally depends on construction methods and the as-built elevation of the foundation surface, but is typically one to two inches thick (Fisher & Kloiber, 2006). Since the grout pad is usually unreinforced and unconfined, the grout pad thickness should be as short as possible. Observations of past earthquakes have indicated that relatively thick grout pads may lead to catastrophic damage. Common failure modes of the grout pad include:–
o   Grout Bearing Failure – As with the concrete foundation, the grout pad may fail due to compressive bearing stresses from the base plate. However, there is virtually no confinement of the grout and the grout pad is typically very thin. Thus, the mechanisms of grout bearing failure and associated strength capacities may be different than the general mechanisms of concrete bearing failure.
o   Local Grout Crushing – As with the concrete foundation, the grout may locally crush under the application of very large bearing stresses.
o   Grout Spalling – Reinforcement is generally not provided for the grout pad; thus, the grout is susceptible to spalling damage, especially under cyclic flexural loading of the base plate . Spalling damage may be reduced or prevented by installing wire mesh or fiber reinforcement.
Grout Damage in Shear – The gout pad, which is typically installed by simply placing workable grout over a cured concrete surface, is weakly bonded to the concrete foundation (due to the cold joint) and shear failure between the concrete and grout is possible, especially under the action of the anchor rod bearing mechanism for shear transfer.

COLUMN ERECTION METHODS

1

The behavior of the base connection may be affected by the type of construction method used to erect the column to the foundation. These methods may result in obstructions between the base plate and concrete/grout foundation interface that are not typically considered during design but may influence connection behavior. Three common procedures are used to erect columns on the foundation: leveling nuts, setting plates and shim stacks . Local practice and the weight of the column generally determine which of these methods are used.


o   Leveling Nut Method - Leveling nuts and washers are installed to the cast-in anchor rods, onto which the base plate is placed atop, and the column is set to proper elevation by turning the leveling nuts. The use of leveling nuts may be not be suitable for erecting heavy columns, as the anchor rods would be loaded in compression prior to grouting. The compression strength of the rods, as well as the possibility of rods pushing out through the bottom of the footing, should be checked. The use of leveling nuts may affect the behavior of grouted base connections loaded in shear, flexure and axial compression. For example, the leveling nuts would constrain the anchor rods in bending which may increase the resistance of the anchor rod bearing mechanism in shear. In addition, the leveling nut detail provides a compressive load path through bearing from the base plate to the anchor rods, which may affect flexural and axial behavior, especially if the grout pad has deteriorated due to crushing/spalling damage.
o   Setting Plate Method - Setting plates (sometimes called leveling plates) can be used to erect columns but are generally more costly than leveling nuts. After the anchor rods have been set, a pre-fabricated steel setting plate (usually 1/4 inches thick) is installed over the rods. Grout is spread over the concrete foundation under the setting plate, and the setting plate is tapped down to the desired elevation and proper level. After the grout cures, the column base plate is set atop the setting plate. Note that this method results in an unbonded steel-to-steel interface between the base plate and the leveling plate, which may affect connection behavior. For example, base plate slip under shear loading may occur between the setting plate steel, rather than the grout or concrete, which may affect the frictional response.

o   Shim Stack Method - The use of steel shim stacks is a traditional method for erecting columns and is advantageous since all compression is transferred from the base plate to the foundation without involving the anchor rods. Steel shim stacks are typically set at the four edges of the base plate as the column is lowered. Similarity as with the leveling nuts, shim stacks may affect base connection behavior by proving a stiff compressive load path between the base plate and the concrete/grout foundation.

Base SHEAR TRANSFER MECHANISMS

1.     SHEAR TRANSFER MECHANISMS


Under conditions of relatively low column base shear with no axial uplift, shear loading in column base plates may be adequately resisted by surface friction between the steel plate and grout/concrete foundation. However, for situations of large lateral loads or column uplift (such as in braced frames), frictional resistance may not be sufficient and shear forces must be transferred to the foundation by other mechanisms. , three popular design alternatives for shear transfer include surface friction, anchor rod bearing and shear lug bearing (Fisher & Kloiber, 2006). In addition, the base plate may be shallowly embedded into the concrete foundation to develop the shear strength through concrete bearing. Special design considerations and construction methods must be taken into account for each of these mechanisms. For example, friction resistance is only possible with axial compression in the column. In addition, under seismic loading, high shear loads and other issues such as foundation rocking, vibrations and uplift make surface friction an impractical choice for shear transfer. According to the AISC Seismic Provisions (2005), many building codes prescribe that friction cannot be considered when resisting earthquake loads. Base plate bearing against anchor rods embedded in the concrete foundation may be practical under low compressive axial loads or axial tension (i.e. uplift) at the column base, when sufficient frictional resistance cannot be developed. Fisher and Kloiber (2006) note that the use of anchor rods to transfer shear forces must be carefully examined due to several assumptions regarding the force transfer to the rods. A primary concern is the uncertainty of uniform transfer of shear loads to all the anchor rods due to lateral displacement (or slip) of the base plate. Highly oversized anchor rod holes (larger than standard oversize holes – refer Fisher & Kloiber, 2006) are typically used in base plates in order to compensate for construction tolerances. To reduce the extent of slip before engagement of all anchor rods, plate washers installed around the rods may be fillet welded to the top surface of base plate. To resist moderate to high column base shear loads, such as induced by seismic loading in low- to mid-rise structures, one or multiple shear lugs (also known as a shear key) may be attached to the base plate. The shear key is often provided in the form of a plate welded to the underside of the base plate. In some cases, a stub wide-flange section is used since it provides a higher bending resistance. The shear lug detail requires additional welding and the need for a pocket in the concrete foundation. Other details  have been proposed for shear transfer in base plates, including embedding the base plate directly into the concrete foundation, attaching it to a grade beam, using shear studs or welding steel reinforcing bar to the base plate (Grauvilardell et al., 2005). However, these details may require elaborate construction measures and are generally costly.

Base LOADING CONDITIONS

1.     

Unlike beam-to-column connections, which are typically designed to resist only flexural and shear loading, column base connections are susceptible to a wide range of loading conditions. The general types of loading for base connections include –
o   Axial Compression – The most typical type of column base loading, axial compression arises mainly from gravity loads on the column.
o   Axial Tension – Axial tension (i.e. uplift) may result from wind uplift or global overturning of the structure.
o   Shear – Shear loading is significant in braced frames, in which lateral loads on the structure are transferred via the braces to the base connection. Shear forces are usually accompanied by axial compression or axial tension, due to gravity loads or forces transferred through the structural braces.
o   Flexure – Flexural loading is significant in moment resisting frames. Flexure is usually accompanied by axial compression, and in some rare circumstances, axial tension (i.e. uplift). Both strong axis and weak axis bending of the column is possible. Biaxial bending may also occur, especially if the column forms part of two or more intersecting lateral-force-resisting systems. Proportional and non-proportional flexural loading is possible; the main difference between these two types of loading is related to the load eccentricity ratio (applied moment divided by applied axial load) as loading progresses, which may affect the connection stiffness and progression of failure modes. For non-proportional loading, the axial force is applied independently of the flexural moments and the load eccentricity ratio may vary substantially as loading progresses. For proportional loading, the axial force and bending moment are applied simultaneously and the load eccentricity remains relatively constant. This is consistent with the application of an eccentric axial load at the top of the column.
o   Torsion – Torsional loading at the base connection is possible, especially for monopole (e.g. traffic pole) structures. Base connection response and design for torsion may be similar to that as for shear loading.
o   Cyclic Loading – Cyclic loading due to seismic excitations may induce mechanical degradation of the connection due to damage of the connection components. Compared to static loading, cyclic loading may influence the progression of failure modes. For example, spalling of the grout pad or facture of the anchor rods or welds (from low-cycle fatigue) may affect the connection behavior.
Fatigue – Often machinery and certain building columns may be subject to vibration or cyclical loads, which may cause high-cycle fatigue failure of the anchor rods. In column base plate connections subject to fatigue, the anchor rod will typically fail before the concrete fatigue strength is reached and it is usually not necessary to consider the fatigue strength of the concrete (Fisher & Kloiber, 2006). Pre-tensioning of the anchor rods may improve the fatigue life of the connection.

Base CONNECTION TYPE

1.     CONNECTION TYPE

Column base connections can be classified into three general types :– deeply embedded, shallowly embedded and exposed.
Deeply embedded type base connections  are constructed by directly embedding the column into a reinforced concrete foundation and, if desired, attaching it to a grade beam. The significance of the base plate and anchor rod components depend on the embedment depth. For columns with very deep embedment lengths, moments and forces are resisted mostly by bearing of the column against the concrete. With proper concrete detailing, embedded type configurations can provide a high flexural stiffness end condition (i.e. assumed as ideally fixed) and the full plastic flexural capacity of the column can easily be obtained .( Nakashima & Igarashi (1986) indicates that, for deep embedment lengths, the presence of anchor rods or base plates has little effect on the moment-rotation response of the connection. In addition, it was determined that a plastic hinge in the steel column may be developed even without the use of concrete reinforcement.



Shallowly embedded connections  are typically installed in a small pocket within the concrete foundation and later covered with plain concrete or grout. The small amount of plain concrete or grout cover may not contribute much to strength and stiffness of the connection for axial tension or flexural loading. However, the strength and stiffness in shear may be significantly high due to bearing between the base plate and concrete/grout pocket. Steel reinforcing bars may be placed over the base plate to develop additional strength and stiffness . the initial flexural stiffness and maximum strength of the connection may be significantly greater than similar exposed column base types Cui et al. (2009).

IMPORTANCE OF BASE CONNECTIONS

1.     IMPORTANCE OF BASE CONNECTIONS:-


Column base connections are one of the most important components in steel structures because they transmit forces from the entire structure into its foundation. An exposed column base plate connection is an assemblage of a column, plate, grout pad, concrete pedestal, anchor rods, washers, and nuts, used to attach a column to its concrete foundation (shown in Figure 1). The plate is welded to the bottom of the column and anchor rods are driven through the thickness of the steel plate and grout pad, and into the concrete foundation. The connection must be capable of resisting shear and axial loads, as well as bending moments. Exposed column base connections have performed poorly in previous major earthquakes in the United States and Japan (Grauvilardell et al., 2005), signaling that although the qualitative response of these connections is well understood, quantitative characterization of this response is not well-established, and relies on sparse experimental data (Fahmy et al., 2000). 

العقود

       1- عقود تحديد التكلفة المسبقة Price given in advance                              
            
* في مثل هذه العقود يتم تحديد الأسعار مسبقا قبل عملية التنفيذ وتكون المخاطر الجزء الكبير منها واقع علي                   وذلك بسبب تحديد السعر مسبقا وبسبب عدم ضمان الأسعار للمواد الداخلة في عملية التنفيذ إثناء العمل بالمشروع
             أي تذبذب الأسعار ويستخدم هذا العقد في  :-
1)    تستخدم في المشروعات الكبيرة المحددة.
2)    السعر يتم تحديده قبل التنفيذ محددة الأسعار .
3)    هذا العقد هو أساس التعاقد.
4)    يستخدم في المشروعات ذات الخبرة المسبقة.

ملحوظة مهمة:-
·        لسهولة التعامل مع مميزات وعيوب كل عقد من العقود يجب النظر إلي
 


                زمن المشروع                   التكاليف               المخاطرة               تذبذب الأسعار      قبول التعديلات

   
            ):                          المقطوعية1) lump-sum (
  
  الخصائص :

-         عقد يتفق  فيه المالك مع المقاول علي سعر اجمالي لتنفيذ العملية وبذاك تكون مخاطرة تغير الأسعار كلها علي المقاول
-         السعر الإجمالي للعملية محدد من بداية المشروع
-         العمل محدد تماما و لذلك يقوم المقاول بعمل حصر لكميات البنود قبل بدء التنفيذ
-         لا يقوم الاستشاري بعمل B.O.Q  و لكنه يضع كميات استرشادية

المميزات :

-         سعر العملية محدد بدقة قبل بداية التنفيذ
-         تحديد السعر من البداية يجبر المقاول على تقليل تكاليف التنفيذ
-         ورغبة من المقاول في تقليل التكاليف الغير مباشر فهو يحاول تقليل زمن التنفيذ
العيوب :

-    رفض المقاول لأجراء إي تعديلات تجرى على التصميم يرغبها المالك إثناء التنفيذ إلا بعد موافقة                                       المالك على زيادة السعر المتفق عليه
-   صعوبة إعداد الرسومات والمواصفات الدقيقة والتي تتطلبها عملية حصر الكميات التي يقوم بها المقاول   
    


2) Unit-price ((سعر الوحدة:

الخصائص :

 -   عقد يعتمد علي تحديد المقاول لسعر الوحدة المنفذة من كل بند من بنود المشروع علي حده  يتحمل  المالك المخاطرة      الناتجة عن تغير كميات البنود المنفذة بينما يتحمل المقاول المخاطرة الناتجة عن   تحرك أسعار البنود إثناء التنفيذ                                                   
 -    يقوم الاستشاري بإعداد قائمة الكميات B.O.Q  ويقوم المقاول بملء أسعار البنود
    -    يكون الحساب الختامي علي أساس الكميات المنفذة فعلا في الموقع مضروبا في سعر الوحدة المتفق               
         عليه    

المميزات :

-         لا يرفض المقاول أجراء التعديلات التي يرغبها المالك علي التصميم لأنها ستضاف ككميات جديدة يحاسب عليها أيضا                                                                                                                                                                                                                                                                   
-         عمل الاستشاري لقائمة الكميات  B.O.Q   يوفر الوقت علي جميع المقاولين المتنافسين لأعدادها
-         توفر هذه الطريقة أساسا عادلا للمالك لاختيار المقاول الأقل سعرا حيث أن كميات بنود الأعمال محددة
من قبل الاستشاري

العيوب :

-         لا يمكن حساب سعر العقد الكلي للمشروع من البداية لكن حدوده معروفة




                                                      
): معدلات التنفيذ3) Schedule of rates (
الخصائص :

-         عقد يعتمد علي تحديد المقاول لسعر الوحدة من كل بند من بنود المشروع الافتراضية
-         يقوم الاستشاري بإعداد قائمة بأسماء و مواصفات البنود الافتراضية للمشروع بدون
      و ضع كمياتها و يقوم المقاول بعد ذلك بملء أسعار البنود
-         يكون الحساب الختامي علي أساس الكميات المنفذة فعلا في الموقع مضروبا في سعر
      الوحدة المتفق عليه


المميزات :

-         توفر هذه الطريقة أسلوبا جيدا في حال كون العملية غير مكتملة التصميم
-         لا يرفض المقاول أجراء التعديلات التي يرغبها المالك علي التصميم لأنها ستضاف ككميات جديدة
      يحاسب عليها أيضا
-         تستخدم هذه الطريقة في حالة الرغبة في سرعة بدء التنفيذ كما في حالات الصيانة السريعة أو الترميم






العيوب :

-         لا يمكن توقع سعر العقد الكلي للمشروع من البداية لأن كميات البنود غير معروفة
-         أسعار البنود التي يضعها المقاول في حالة عدم معرفة الكميات المنفذة تميل إلي الارتفاع لان المخاطرة أكبر
-         المخاطرة علي المالك اكبر من المخاطرة علي المقاول وذلك لعدم معرفة كميات البنود


 4) Package deal

وفي هذه العقود يتم تسليم المقاول المشروعات كوحدة واحدة تصميما وتنفيذا

المميزات :-

1)    يسعى المقاول لتقليل التكلفة وتقليل زمن المشروع .
2)    يمكن الاستفادة من الخبرات مسبقة للمقاول إثناء التنفيذ .

العيوب :-
1)    المخاطرة واقعة علي المقاول في حال  وجود أي تذبذب في الكميات أو الأسعار .
2)    يرفض المقاول طلب أي تعديلات من لدي المالك و ذلك ستزيد من التكلفة .

B) Cost reimbursement (عقود تعويض التكلفة   ):

وهي عقود يتم فيها التعويض للمقاول عن التكاليف في التنفيذ مضافا إليها هامش الربح والخاطرة في مثل هذه العقود وتكون واقعة برمتها علي المالك وذلك لعدم الرؤية والمعرفة التامة للتكلفة الكلية وبذلك تتطلب مثل هذه العقود إشراف كامل وبدقة من المالك علي المالية المنصرفة .  وتستخدم في :-
1)    المشروعات الكبيرة و التي من الممكن أن تكون قد تنفذ لأول مرة مثل الابتكارات .
2)    المشروعات الكبيرة و غير معلومة التكلفة مثل الترميمات والطوارى والسرية .
3)    لا يمكن تحديد السعر مسبقا ولكن يمكن تحديد طريقة أخذ الأتعاب fee .


1)    Cost + fixed fee (التكلفة مضافا لها مبلغ أتعاب ثابتة):

الخصائص :

-   عقد يعتمد علي تعويض المقاول عن التكاليف (المباشرة و غير المباشرة )التي يدفعها لإتمام المشروع
       مضافا لها أتعابه كمبلغ يتم تحديده قبل بدء التنفيذ
                                
المميزات :

-         تعطي هذه الطريقة حافزا للمقاول لتخفيض زمن تنفيذ المشروع



العيوب :

-         لا يمكن توقع سعر العقد الكلي للمشروع من البداية لآن حجم العمل غير محدد
-         لا تعطي هذه الطريقة حافزا للمقاول لتخفيض تكاليف المشروع
-         هناك بعض التأخير في بدء التنفيذ حني يتم توصيف البنود و التي علي أساسها يتم تحديد الأتعاب
-         يرفض المقاول أجراء التعديلات التي يرغبها المالك علي التصميم لأن أتعابه محددة
-         المخاطرة علي المالك اكبر من المخاطرة علي المقاول و ذلك لعدم معرفة كميات البنود


















2) Cost + % fee (:( التكلفة مضافا لها الأتعاب كنسبة منها
الخصائص :

-         عقد يعتمد علي تعويض المقاول عن التكاليف (المباشرة و غير المباشرة ) التي يدفعها لإتمام المشرع
مضافا لها أتعابه كنسبة من نفقات المشروع يتم تحديدها قبل بدء التنفيذ

المميزات :

-         لا تعطي هذه الطريقة حافزا للمقاول لتخفيض تكاليف تنفيذ المشروع
-         لا تعطي هذه الطريقة حافزا للمقاول لتخفيض زمن تنفيذ المشروع
-         لا يرفض المقاول إجراء التعديلات التي يرغبها المالك على التصميم لأن أتعابه ستزيد العمل المنفذ
-         تستخدم هذه الطريقة في حالة رغبة المالك في تنفيذ عمل بطريقة مبتكرة ليس للمقاولين خبرة تنفيذية بها


العيوب :

-         لا يمكن توقع سعر العقد الكلي للمشروع من البداية لآن حجم العمل غير محدد و الأتعاب غير محدد
-         المخاطرة علي المالك اكبر بكثير من المخاطرة علي المقاول ذلك لميل المقاول لزيادة التكاليف و بالتالي
زيادة أتعابه


3) Target cost + variable fee (المستهدفة مضافا لها أتعاب متغيرة التكلفة):
                         
الخصائص :

-         عقد يتفق فيه المالك و المقاول علي تعويض المقاول عن التكاليف (المباشرة و غير المباشرة ) التي يدفعها لإتمام المشروع والتي يتم تحديدها من البداية مقابل نسبة محددة من التكاليف كأتعاب للمقاول
-         يتم الاتفاق علي تقاسم الوفرة في التكاليف بين المالك و المقاول في حال إتمام المشروع بتكاليف أقل
من المتفق عليها و بذلك تزداد الأتعاب المتفق عليها
-         ويتم تقاسم الزيادة عن التكاليف بين المالك و المقاول في حال أتمام المشروع بتكاليف أكبر من المتفق عليها و بذلك تقل نسبة الأتعاب المتفق عليها


المميزات :

-         تعطي هذه الطريقة حافزا للمقاول لتخفيض تنفيذ المشروع
-         تعطي هذه الطريقة حافزا للمقاول لتخفيض زمن تنفيذ المشروع
-         يمكن توقع سعر العقد الكلي للمشروع من البداية 

PLASMA ARC TECHNOLOGY

PLASMA ARC TECHNOLOGY
                                                                                 
Plasma technology development began approximately 40 years ago as a means to provide an electrically generated energy source in the form of a high temperature gas. Plasma torches have been used for decades in many industrial applications. The technology is well established in metal manufacturing from metallurgical processing, such as material synthesis and surface coating, to the welding and cutting of metals. Plasma-arc furnaces have been used for waste destruction and disposal of hazardous, military, organic, and biological materials.

Plasma is often described as "the fourth state of matter." Electrical energy is applied to a gas (oxygen, argon, air, neon, etc.), which transforms the gas into plasma. Plasma is an ionized gas, which is composed of equal numbers of positive ions and electrons. Plasmas exhibit some properties of a gas but differ from a gas in that they are good conductors of electricity and magnetic fields. Natural occurrences of plasma include lightning and the Aurora Borealis. Plasma torches are devices that utilize plasma-produced heat for high­ temperature operations. Based on the concept of Joule heat, this is the conversion of electrical energy to heat energy (Mayne and Beaver, 1996).

Four sizes of plasma torches exist and are ranked by the electrical energy input, DC Power, applied to the torch: 100-kw, 240-kw, 1-Mw, and 6-Mw (for industrial purposes). The torch's basic components .

  
Air (gas), electricity, and water are supplied through the top of the torch. Electrodes are located at the rear and near the tip of the torch. Temperatures at the electrode exceed all melting points; therefore, copper electrodes are replaced after 500 hours and most alloys can last 1000 hours. The plasma torch configuration can easily be modified for various gases at a wide range of pressures (from 20 atm to a low vacuum). Only one-tenth of one percent (0.1%) of the gas is actually converted to plasma. The electrical arc traversing between electrodes through an induced partially ionized gas generates the plasma temperatures. Movement of the arc and water-cooling are essential for the life of the electrodes.


Plasma torches have two configurations. The most commonly used is the transferred arc; the non-transferred arc is the less common alternative. The transferred arc flow of energy moves from one electrode to another. Applications normally involve a closed furnace or melter. The non-transferred arc can be directed at specific targets since the arc travels between electrodes that are system-contained and do not require a separate base electrode. Arcs generated at the back electrode are passed out of the torch and return to the front electrode in a ')-shaped" orientation (Mayne, 2000). The difference between these two systems.

IN-SITU THERMAL MEASURES

As seen in the previous section, heating of soil results in decreased compressibility and increased strength. Thermal improvement of soils has been utilized for over one hundred years. Thermal treatment has been used as a means for soil improvement of weak foundation material and stabilization of slopes. In-situ thermal treatment generally is achieved by the burning of liquid, gaseous, or solid fuels at the ground surface or in a borehole, and some times more advanced burning devises have been employed.

1 Ground Surface Heating

Ground surface treatment has typically involved the burning of coal or wood on the surface or in ventilated containers over an extended period. This proved to be difficult to control as the amount of heat being applied was not regulated. In the United States, in the late 1880s, clays were burned (wood) to create aggregate for highways and railroad ballast (Janiewicz, 1972).

2 Borehole Treatment

Borehole heat treatment has been used in the United States, Japan, Rumania, and Russia to stabilize plastic clay in-situ. Both super-heated air and fossil fuel sources have been used. Borehole treatments usually are categorized as closed or open-hole systems.

Closed-hole Systems

In Russia (USSR), methods for thermal treatment of soil by burning fuel in a closed system were investigated. The first applications involved introducing heated air under pressure into a boring, as seen in Figure 5 (Beles and Stanculescu, 1958).